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Shape-based recognition

• Humans can easily recognize objects using shape information

• Classical approach for recognizing rigid object

• Important for many object categories

- Fairly abstract representation



Local deformation models

• Measure amount of bending and stretching necessary to turn 
one curve into another --- only captures local information 
[Basri, et al 95], [Younes, 98]

can turn these into each 
other without much bending 
at any point

Similar objects with 
completely different local 
boundary properties



Compositional model

• Consider arrangement of points far from each other

• Combine matchings between subcurves to form longer matchings
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Combine matching from A1 to B1 
with matching from A2 to B2

quality depends on quality of 
matchings being combined and 
arrangement of (p1,p2,p3), (q1,q2,q3)
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Shape-tree
• Shape-tree of curve from a to b:

- Select midpoint c, store location w.r.t. a,b frame

- Left child is a shape-tree of sub-curve from a to c

- Right child is a shape-tree of sub-curve from c to b
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Shape-tree

• Invariant to similarity transformation

• Subtree is shape-tree of sub-curve

• Given placement for a,b we can reconstruct the curve

• Bottom nodes captures local curvature

• Top nodes capture curvature of sub-sampled curve 



Deformations

• Perturb relative locations stored in a shape-tree

- Reconstructed curve is perceptually similar to original

- Global properties are preserved



Distance between curves

• Define distance between shape-trees in terms of deformations 
applied to each node

• But a curve can be represented with multiple shape-trees!

- We need to search over possibilities

• Given curves A,B

- Fix shape-tree for A, search over shape-trees for B: O(n4)

- Jointly find correspondences and common tree: O(n4 log n)

• Reason about missing parts by cutting off sub-trees



Recognition results

MPEG7

Shape-tree Inner distance G. M.

85.30 85.40 80.03

Swedish leaves

Shape-tree Inner distance Shape context

94.31 (mean) 94.13 88.12

Example category:



Cluttered images
• Consider embedding deformed curve in images

- Cost depends on deformation + image evidence

- No edge detection

• Combine partial embeddings with bottom-up algorithm

- Generalization of Dijkstra’s shortest path (with D. Mcallester)

- Find best match without considering bad ones



Problems

• Current local evidence measurement too weak

• Often place object at strange location

- Close inspection shows that gradient is high along boundary

• What is going on?

- We may need NMS

- We may need to capture internal coherence

- Could try finding multiple good solutions



Parts

• Sub-trees represent generic curves

• We can share sub-trees among different models

- Useful for bottom-up matching

• Look for a context-free grammar for compactly representing all 
shape-trees of a big data set

- Terminals l(a,b) are line segments from a to b

- Sentences are curves

- Non-terminals N(a,b) represent curve fragments



Examples

• L(a,b) generates an “almost straight curve” from a to b

• Productions

- L(a,b) ➝ L(a,c) L(c,b)    where c ~ (a+b)/2

- L(a,b) ➝ l(a,b)                if a near b

• Can also define B(a,b) to generate an elongated branch 
anchored at a and b

• etc.

• Learning is a challenge


